From Personal Computers to Personal Robots

Challenges in Computer Science Education

Nikolaus Correll

Department of Computer Science
University of Colorado at Boulder
Mechanism vs. Computer

Unimate (1961)
IBM 704 (1964)
From Personal Computers to Personal Robots

Computers + Sensors & Actuators -> **Personal Robots** <- Computers & Sensors + Actuators
Driver #2: Sensors
State of the Art

Mobility (1st semester)

KIVA Systems

Rethink Robotics

Manipulation (2nd semester)

Orbotix

"Let me drive this around for a second." - President Barack Obama

Modular Robotics
Technical Challenges

• Uncertainty (sensing/actuation) requires shift from **deterministic** to **probabilistic** reasoning

• Robots are systems-of-systems consisting of hundreds of heterogeneous, distributed computing elements

• Computing interactions with the world requires **understanding of the physical world’s dynamics**

• Play and backlash in mechanism
• 7 micro-controllers + 1 PC
• Non-trivial mass to accelerate

=> Need “Robotics” classes within CS curriculum
Technical Challenges

- Uncertainty (sensing/actuation) requires shift from deterministic to probabilistic reasoning.
- Robots are systems of systems consisting of hundreds of heterogeneous, distributed computing elements.
- Computing interactions with the world requires understanding of the physical world's dynamics.
- Play and backlash in mechanism:
 - 7 micro-controllers + 1 PC
 - Non-trivial mass to accelerate

Artificial Intelligence

Cyber-Physical Systems

Software Engineering

Programming Languages

Robotics

Natural Language Processing

Computer Vision

Computer Graphics

=> Need “Robotics” classes within CS curriculum
Educational Challenges

• Scalability

• Assessment

• Complexity
Approach

• Tight integration of simulation and real world experimentation
• Systematic experimentation and portfolio-based assessment
• Goal-based learning inspired by industry drivers
1st Semester: Robotic Maze Competition

• Find “chargers” in the environment before you run out of power

• Tactics
 – Random Walk
 – Wall following
 – Simultaneous Localization and Mapping

• Simulator can control real robots via Bluetooth based on real-time sensor data
Locomotion and Manipulation

• Coordinate frames
• Trigonometry
• Linear Algebra

How does wheel motion determine my x-y position and how do I have to move my wheels to get somewhere?
Path Planning

Dijkstra A* RRT

What's the shortest path from A to B if I know the map?
Problem: Uncertainty

\[v = r \phi' \]

Problem: \(\phi' \) subject to uncertainty. Position estimate probabilistic. How to improve it?
Beyond Odometry: Image Processing

Convolution-based Filtering

Thresholding

![Convolution-based Filtering Diagram](image)

![Thresholding Image](image)
Feature extraction

Feature Extraction: Line detection

- Least-squares estimate
- Split-and-Merge
- RANSAC

Raw Date of Laser Scanner

Extracted Lines

\[\rho_i \cos(\theta_i - \alpha) - r = d_i \]

\[S_{r,\alpha} = \sum_i d_i^2 = \sum_i (\rho_i \cos(\theta_i - \alpha) - r)^2 \]
Quantifying Noise

Normal distribution

Multi-variate Gaussian

Two noisy observations can be fused to a single observation with lesser variance!
Error Propagation

• Key ideas
 – Every sensor reading has a variance
 – Variances carry forward into measurements
 – Variances are weighted by their impact on the measurement
Markov Localization

- Bayes Rule

\[P(A|B) = \frac{P(A)P(B|A)}{P(B)} \]

- Perception update:

\[P(\text{loc}|\text{feat}) = \frac{P(\text{loc})P(\text{feat}|\text{loc})}{P(\text{feat})} \]

- Action update:

\[P(\text{loc}|\text{odo}) = P(\text{loc}')P(\text{odo}|\text{loc}' \rightarrow \text{loc}) \]
Kalman Filter

- Like Markov Localization, but continuous states (Normal distributions)
- Key idea:
 - Predict what robot *should* see at the estimated position
 - Compare with what it *does* see
 - Calculate in-between position weighted by variances
EKF SLAM
(Simultaneous Localization and Mapping)

• Kalman Filter
 – Position/Orientation
 – Features in the environment

• Re-observation corrects all features
Summary

<table>
<thead>
<tr>
<th>Topic</th>
<th>Before</th>
<th>After</th>
<th>+6M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward kinematics using basic trigonometry</td>
<td>1.3 ± 60%</td>
<td>3 ± 33%</td>
<td>2.6 ± 53%</td>
</tr>
<tr>
<td>Dijkstra and A* search</td>
<td>1.9 ± 78%</td>
<td>3.3 ± 12%</td>
<td>3.1 ± 12%</td>
</tr>
<tr>
<td>Bayes’ rule</td>
<td>0.8 ± 99%</td>
<td>2.6 ± 20%</td>
<td>2.2 ± 33%</td>
</tr>
<tr>
<td>Convolution</td>
<td>0.6 ± 145%</td>
<td>2.3 ± 38%</td>
<td>2 ± 67%</td>
</tr>
<tr>
<td>Error propagation</td>
<td>0.9 ± 83%</td>
<td>2.5 ± 14%</td>
<td>2.2 ± 30%</td>
</tr>
<tr>
<td>Kalman Filter</td>
<td>0.1 ± 90%</td>
<td>2 ± 39%</td>
<td>1.6 ± 44%</td>
</tr>
<tr>
<td>Simultaneous Localization and Mapping (SLAM)</td>
<td>0.1 ± 152%</td>
<td>2.3 ± 34%</td>
<td>1.85 ± 53%</td>
</tr>
<tr>
<td>Markov Localization</td>
<td>0.14 ± 86%</td>
<td>2.1 ± 22%</td>
<td>1.5 ± 54%</td>
</tr>
<tr>
<td>Inverse kinematics of simple mechanisms</td>
<td>0.9 ± 94%</td>
<td>3 ± 18%</td>
<td>2.5 ± 25%</td>
</tr>
<tr>
<td>Programming in Java</td>
<td>2.19 ± 81%</td>
<td>3.1 ± 15%</td>
<td>3 ± 14%</td>
</tr>
</tbody>
</table>

0: Nothing 2: Get Basic Idea 4: Very Confident

N=21
2nd Semester: Manipulation Challenge

• System design around manipulation

• Previous editions
 – Robot Gardening
 – “Robots building Robots” (ongoing)

• Multi-year activities
Advanced Robotics

• In-depth treatment of “Intro” topics
 – Kinematics of differential wheel -> Kinematics of Cars
 – Forward Kinematics -> Denavit-Hartenberg scheme
 – Inverse kinematics of simple arms -> General inverse kinematics + numerical methods
 – EKF-based SLAM -> Graph based SLAM
 – RRT -> Sampling-based Motion Planning
New hardware
ROS

• Message passing system
• Visualization / Simulation
• Library
 – Hardware drivers
 – Algorithms
• Virtual machine for download

http://correll.cs.colorado.edu/clam/?page_id=21
New Challenges

• Point clouds (RGB + depth)
 – Iterative Closest Point algorithm
 – SIFT features
 – Loop Closure (SLAM)

• Grasping
 – What makes a good grasp? (Coulomb’s Friction Law)
 – How to plan for a good grasp?
New Tasks

• Weekly design reviews
• Write a paper
 – Research hypothesis
 – Heilmeier questions
 – Introduction, Material & Methods, Results, Discussion, Conclusion
• Perform meaningful experiments
 – Null-hypothesis on distributions
 – Test significant difference between distributions
 – Make a significant number of true-false test
Summary

<table>
<thead>
<tr>
<th>Topic</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward kinematics of manipulating arms</td>
<td>1.2 ± 147%</td>
<td>2.8 ± 13%</td>
</tr>
<tr>
<td>Inverse kinematics of robotic arms</td>
<td>1.1 ± 117%</td>
<td>2.6 ± 9%</td>
</tr>
<tr>
<td>Sampling-based motion planning</td>
<td>1.1 ± 117%</td>
<td>2.6 ± 9%</td>
</tr>
<tr>
<td>Scale-invariant feature transformations</td>
<td>0.9 ± 77%</td>
<td>2.2 ± 25%</td>
</tr>
<tr>
<td>Iterative Closest Point (ICP) and RGB-D Mapping</td>
<td>0.5 ± 90%</td>
<td>2.3 ± 27%</td>
</tr>
<tr>
<td>Visual Servoing</td>
<td>0.5 ± 90%</td>
<td>2.1 ± 23%</td>
</tr>
<tr>
<td>Grasping</td>
<td>0.6 ± 73%</td>
<td>2.1 ± 14%</td>
</tr>
<tr>
<td>Graph-based SLAM</td>
<td>1 ± 80%</td>
<td>2.1 ± 14%</td>
</tr>
<tr>
<td>How to write a Research Paper</td>
<td>2.2 ± 35%</td>
<td>2.7 ± 15%</td>
</tr>
<tr>
<td>Statistical Significance Tests</td>
<td>1.8 ± 53%</td>
<td>2.4 ± 18%</td>
</tr>
</tbody>
</table>

0: Nothing 2: Get Basic Idea 4: Very Confident

N=10
Class Debates

- Robots put humans out of work, Robots should be allowed to drive cars, ...
- Argue Oxford style, 10 Pro, 10 Contra, backed up by technical arguments

<table>
<thead>
<tr>
<th>Statement</th>
<th>strongly disagree</th>
<th>disagree</th>
<th>neutral</th>
<th>agree</th>
<th>strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help me to improve my presentation skills</td>
<td>0.0%</td>
<td>5.9%</td>
<td>41.2%</td>
<td>47.1%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Prepare me for questions that engineers face from society</td>
<td>0.0%</td>
<td>16.7%</td>
<td>11.1%</td>
<td>55.6%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Fundamentally changed my opinion on a topic</td>
<td>11.8%</td>
<td>23.5%</td>
<td>52.9%</td>
<td>11.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Are relaxing</td>
<td>0.0%</td>
<td>27.8%</td>
<td>27.8%</td>
<td>38.9%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Let me better understand the technical content of the class</td>
<td>11.1%</td>
<td>16.7%</td>
<td>44.4%</td>
<td>27.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Should be part of every class / introduced early in the curriculum</td>
<td>0.0%</td>
<td>29.4%</td>
<td>41.2%</td>
<td>23.5%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Should be replaced by a more in-depth treatment of the technical content</td>
<td>5.9%</td>
<td>35.3%</td>
<td>35.3%</td>
<td>11.8%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Should take less time</td>
<td>11.1%</td>
<td>27.8%</td>
<td>44.4%</td>
<td>5.6%</td>
<td>11.1%</td>
</tr>
<tr>
<td>Should allow for more discussion</td>
<td>0.0%</td>
<td>11.1%</td>
<td>27.8%</td>
<td>55.6%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Reflect up-to-date issues in research and society</td>
<td>0.0%</td>
<td>11.8%</td>
<td>17.6%</td>
<td>29.4%</td>
<td>41.2%</td>
</tr>
</tbody>
</table>

Introduction to Robotics, N=18
Peer-to-Peer Learning in Projects

2008 iteration of “Advanced Robotics” (MIT), N=12
Scalability

• Approach
 – Simulation for many
 – Milestones
 – Experiments on shared platform

• Mainly computing challenges

• Hardware experimentation needs to be requirement
Assessment

• Math-based homework, mid-term and final
• *Systematic, experimental data*
 – Average distance traveled
 – Average computation time
 – ...
• Final presentation / competition/ research paper
• Still unclear how to specify scope of projects
• Portfolio-based assessment with itemized point system
Complexity

• **Approach**
 – Goal-based approach
 – Focus exclusively on software/algorithms
 – Online materials hyperlink to research papers and wikipedia pages

• **Breadth vs. Depth**
 – Deeper learning in the Intro-class
 – Intro topics more cohesive
Summary

• CSCI3302 and CSCI4302/5302 (pending) established
• All course materials online, tools available via Roadnarrows.com, Cyberbotics.com (free for “Ratslife”), ros.org
• Lots of work down the line
 – Reliable simulation environments
 – Improved assessment structure
 – Deeper learning in advanced robotics
 – Improve debate quality
 –
References

• http://correll.cs.colorado.edu