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Since the first deliberate sowing and harvesting around ten thousand years ago, 

agricultural techniques have been industrially streamlined and transformed the 

vegetable garden from a necessary part of every household to a luxury hobby in the 

developed world. Efficiency has increased exponentially with the industrialization of 

the agricultural sector in the 20iest century and lead to a system that has become a 

major challenge to our eco-system, economy, health-care system, and national 

securityi. At the same time the gap between the garden and the machine postulated 

by Leo Marxii has been ever increasing, disconnecting food production from 

consumption. The working thesis of this paper is that these challenges are driving 

technological evolution toward small-scale autonomous systems that provide care 

to individual plants. These robotic systems might remedy not only the challenges of 

the current agricultural system, but also bring agriculture closer to humans:  Being 

able to tend to individual plants on a need-basis will enable decentralized 

production of food in ecologically sustainable poly-cultures, optimal assignment of 

nutrients to each plant, and a reduction of overall pesticide consumption. This 

transition comes with labor requirements that cannot be provided by current 

automated systems and the current level of technology, and therefore require 

additional research in perception, manipulation, control and plant sciences. 

This paper is organized as follows: After a brief history on agriculture, we will 

describe the challenges of the current agricultural system at the time of writing. We 

will then review the state-of-the art in perception, manipulation, and artificial 

intelligence techniques with respect to autonomous agriculture, and outline the 



requirements for an autonomous precision agriculture system that can tend to poly-

cultures. The paper is concluded with a discussion on technical and societal 

challenges that such a system would entail.  

Introduction 
Since the advent of agriculture around 12,000 years ago, humans have developed a 

highly sophisticated system for global food production with the most rapid 

technological advances occurring during the second half of last century. In the 

1920ies, agriculture has not only adopted new machinery, but also the financial, 

cultural, and ideological apparatus of industrialismiii. This process has led to ever 

increasing farm equipment, modern plant breeding programs, the use of synthetic 

fertilizers, delivery of water via irrigation systems, and the use of pesticides to 

control crop herbivory, which have all contributed to a tremendous increases in 

crop yield. For example, corn yields in the US have increased approximately 400%-

500% from 1940 to 1997iv. Together with consolidation of small farms into larger 

ones, the number of people that a single farmer in the US provides for increased 9 

fold from 15.5 people per farm in 1950 to 140 people per farm in 1997v. These 

developments came at tremendous environmental costs. Increased fertilization has 

led to excess nitrogen and phosphorus in the water systems impacting both human 

health and the integrity of aquatic ecosystem and increases in nitrous oxide 

production (a potent greenhouse gas)vi. More recently, there is also an increasing 

awareness that the global supply of phosphorus, which is a non-renewable resource 

but an essential plant nutrient contained in most synthetic fertilizers, is expected to 

peak mid-century and decline thereaftervii. Also, cultivation of just a few crops (corn, 

soybeans, hay and wheat make up 68% of farm land in the USviii) in ever increasing 

mono-cultures and the resulting lack of plant diversity make these systems 

vulnerable to large scale pest outbreaks. Finally, the high specialization on certain 

crops in different parts of the US - which is the result of industrial streamlining the 

process - requires considerable transportation cost, and might become infeasible 

with increasing cost of oil. Taken together, there is a critical need to develop 



agricultural practices that deliver water and nutrients in a manner that minimizes 

losses from these systems, while creating a an ecologically resilient agricultural 

system that can withstand or quickly recover from disturbances such as pest 

outbreaks. 

 

Figure 1: Artist impression of an indoor precision agriculture system that is co-located 

with people. 

This paper argues that advances in robotics can decrease detrimental effects of 

farming by precise administration of water and nutrients and inter-cropping, while 

bringing agriculture closer to consumers, and outlines challenges that lie on the way 

to implement this vision. Besides being able to provide individual plants with the 

required resources on a need-basis, small-scale robotic platforms are not limited to 

operate on fields, but could also re-claim urban environments that are currently 

deprived from agriculture and horticulture such as within offices, shopping malls or 

roofs. A concept drawing of a team of robots cultivating plants in a shopping mall is 

shown in Figure 1. 

State-of-the-Art 
The vision of plant-level precision agriculture by autonomous agents is enabled by 

four complementary factors: First, the increasing cost of non-renewable resources 

such as oil and phosphorous; second, the current trend in agriculture to precision 



agricultureix; third, the ability of so-called “companion plants”x to benefit each other 

when planted in close proximity, and fourth recent advances in computing, 

perception, actuation, and control that have enabled autonomous systems with a 

high level of robustnessxi and manipulation dexterityxii. The remainder of this 

section focuses on particular instances of sensing, actuation, computation, and 

systems thereof, which are specific to the agricultural domain. 

Sensing 
Sensing is the process of recording data from the environment with the goal to infer 

the status of a system under observation. In an agricultural application, one of the 

prime observables are water, light and a plant’s developmental stage. Given 

knowledge on how the plant “works”, these observations can be used to infer what 

the plant needs. In addition to soil moisture and ambient light sensors, other sensing 

modalities include vision, depth images, infrared spectroscopy, and touch, to name a 

few. 

Ultimately, sensor data support a decision making process. For example, local soil 

moisture measurements can help to deploy water in a resource-optimal wayxiii, 

whereas recordings of the reflected infrared spectrum might reveal plant stress and 

serves as an indicator for nutrient requirementsxiv. A consumer example that 

focusses exclusively on automated sensing is the product “EasyBloom”, a pen-

shaped, water-proof device with a moisture, light and temperature sensorxv. This 

data is then used to match the actual humidity, light, and temperature requirements 

of a variety of plants from a database to help the gardener to choose plants to grow 

in this specific location. 

One of the richest source of information is vision. General solutions for extracting 

information such as the maturity of fruits, the location of stems and leaves, or their 

health that are robust to environmental and lighting conditions, for extracting 

information remains a hard problemxvi, however. Nevertheless, solutions for specific 

plants and environments have demonstrated their potential for being used in 

production environments, for example the distance between branch junctions of the 



cotton plant can serve as cue for its irrigation schedule
xviii

xvii , the size of the shaded 

area under a grapevine canopy is related to its water use , or thermal imaging can 

be used to assess apple maturity in an orchard. Recently, a new class of sensors has 

emerged that can provide imagery and depth data at high resolution and speed. 

Driven mainly by the gaming industry (with the Microsoft Xbox Kinect the most 

prominent example), it is now possible to quickly perceive the full 3D geometry of a 

plant’s canopy at low cost.  

Actuation 
The number of distinct actions that are required from planting to harvesting are 

enormous and versatile, classically requiring distinct equipment with specific 

effectors. Advances in sensing (see above) have led to autonomous solutions for 

harvesting specialty crops such as apples
xxiii, mushrooms

xxvii

xxviii

xix, cherriesxx, cucumbersxxi, tomatoesxxii, 

melons xxiv, and strawberriesxxv, among others. Another important 

task is trimming, that is clipping of leaves and branches so that the plant grows in a 

desired shape. For example, stems can be located in 3D using stereo vision, which 

can then guide a clipping tool for trimming rosesxxvi, or to prune grape vines, which 

is commercialized by Vision Robotics . Also automatic weeding is an active area of 

research . Little research has been conducted on other important manipulation 

functions, such as tying and untying plants from guiding poles or excavating entire 

plants.  

While economic drivers seem yet not to be sufficient for broad deployment of 

autonomous systems for tending to specialty crops, research into enabling 

technologies such as low-cost robotic arms with high dexterity, is fueled by 

applications not related to agriculture, such as tele-operation in spacexii or robotic 

surgeryxxix.  

Computation 
The availability of powerful, cheap, and light-weight computation for agricultural 

purposes is a result of Moore’s law who predicted the density of integrated circuits 

to double every 2 years. This law has persisted till today and is mainly driven by the 

proliferation of computing in society and the resulting strong economical drivers. 



In addition to the computation, signal processing, and control involved in sensing 

and actuation, gardening itself is a computational problem. At the plant level, an 

individual plant can be understand as a control system that reacts to input of 

nutrients, water, light and trimming, by vegetative and fruit growth. For example, 

tomato plants exhibit mostly vegetative, i.e. green mass, growth when only provided 

with nitrogen, but require potassium and phosphorus for fruit growth

xxxii, i.e. plant growth is 

dominated by the most limited resource. 

xxxiii

xxx.  Decisions 

on what kind of input a plant needs based on observations acquired using sensors 

require an in-depth expert knowledge of plant dynamics, which can be obtained by 

systematic studies that record growth parameters vs. nutrient/water/air intakexxxi 

and are dominated by Liebig’s principle of the minimum

 Gathering systematic data on how 

different control parameters affect plant growth allows deriving precise models of 

plant dynamics. For example, the EPIC crop growth model  provides differential 

equation-based models for a series of crops (wheat, corn, rice, sunflowers, soybeans, 

barley) and models the conversion to biomass, the division of biomass into roots, 

above ground mass, economic yield, and root growth as a function of water use, 

nutrient uptake and solar radiation. This model requires 22 parameters that define 

each species and it is governed by 65 equations. Although this complexity lets one 

assume that the model is comprehensive, it is still far from modeling the complexity 

of a real living system that is affected by locally varying environmental conditions, 

and therefore still requires feedback when used in a control context. Being able to 

get a thorough understanding how a plant will react when presented with varying 

resources under different environmental conditions and given its specific history is 

crucial for optimally controlling a plant, however. We believe that progress in this 

direction, which is currently mainly led by researchers in agriculture and plant 

biology, will be enabled more and more by robotic technology, for example by 

automating measurements by physically moving a probe or by relying on recent 

progresses in sensing.  



Systems 
Together sensing, actuation, and computation potentially allow integrated systems 

that respond to actual plant needs with appropriate actuation, much in the way a 

human gardener could do. Systems that reliably do this are not existent at the time 

of writing or focus only on very specific aspects of the process in specialized, large-

scale agricultural settings involving a single plant species. In order to exemplify the 

state of the art, we will describe two small-scale robotic gardening systems: the 

Telegardenxxxiv that was operational from 1995 to 2004 and allowed people from all 

over the world to plant seeds and tend to the plants via the Internet, and the 

distributed robotic garden projectxxxv that was started in 2008 and aims at fully 

autonomous growth of tomato plants, that is watering the plants, assessing plant 

status, and picking the fruits.  

The TeleGarden (USC) 
The Telegarden, has been developed by researchers at the University of Southern 

California (Prof. George Bekey and Prof. Ken Goldberg), together with performance 

artists (Joseph Santarromana). It is primarily an art installation that allows internet 

users to view and interact with a remote garden filled with living plants. Members 

can plant, water, and monitor the progress of seedlings via the tender movements of 

an industrial robot arm. The Telegarden went online in summer 1995 and attracted 

over 9000 visitors to help cultivating it in the first year. The garden was then moved 

to the lobby of the Ars Electronica Center in Austria, where it remained till 2004. 

The system consists of an industrial robot arm that is statically mounted in the 

center of a circular pot filled with soil, see also Figure 2. The robot arm’s end-

effector is equipped with a camera, a watering hose, and a mechanism to deposit 

seeds into the soil, which are networked with the internet. Users have the ability to 

login to the system from anywhere in the world, control the position of the robot 

arm, observe the field through the camera, and trigger watering and seed 

deposition. 



 

Figure 2: The Telegarden (1995-2004, networked art installation at Ars Electronica 

Museum, Austria.) Co-directors: Ken Goldberg and Joseph Santarromana Project team: 

George Bekey, Steven Gentner, Rosemary Morris Carl Sutter, Jeff Wiegley, Erich Berger. 

(Photo by Robert Wedemeyer). 

The system thus provides only two distinct forms of actuation, distributing water 

and depositing seeds. It has a single mode of sensing, namely vision. All decisions 

being made by online visitors based on their perception are limited to these two 

modes of actuation and are exclusively informed by visual feedback through the 

robot’s sensor. There are three important points with respect to further automation 

of this system: First, it is irrelevant for the operation of the garden, if these decisions 

are made by people – who can download pictures of the garden to their computer, 

look at them, and send back actuation commands – or by a computer that is 

programmed with some kind of agenda when and where to plant plans, and that 

knows when which plant needs water and how much. Second, making all these 

decisions, that is understanding what one sees on the images and planning the 

growth cycle is still – in 2012 – a hard technical problem. Third, even though the 



Telegarden is fully remote controlled, the robotic system performs only a fraction of 

the tasks that a production system really requires to solve: external, human 

supervision is needed to remove old or dead plants and weeds, or deploy pesticides 

in case of a pest infection, among others. 

Being an artistic installation, the Telegarden also shed light on how technology can 

help to bring people closer to people and bridge the gap between the machine and 

the garden. Ken Goldberg describes the project as follows: “In the past 10 years since 

the garden went online we’ve had over 10,000 members that have registered and 

participated in the garden. Over 100,000 people have visited and looked around in the 

garden during that time. One of the things that surprised us was how connected or 

attached the people became to the seeds they planted in the garden. People were 

sending emails to their friends in the garden saying, `Hey, can you water my plant 

while I am gone?’, or people were becoming very protective of their plants and getting 

irritated when someone else planted a seed nearby them. We also see interactions 

between people, talking back and forth. Generally, they are talking about things like 

the weather, their kids, their own gardens… “ 

The Telegarden installation has therefore not only pushed the boundary of 

technology – the functional basis for providing automated horticulture, but also 

challenges our understanding of what sensorial perceptions gardening entails. 

Analogous to the rhetorical question “Is a Tomato natural” posed by Ann Vileisisxxxvi, 

the Telegarden challenges what the key ingredients to create a pastoral experience 

are, and in particular which role technology can play to create an experience that is 

“natural”. 

The Distributed Robotic Garden (MIT) 
Unlike the Telegarden, which focuses on actuation and relies on humans for 

perception and decision-making, the distributed robotic garden at MIT is a first 

attempt of an integral system that combines sensing, computation and actuationxxxv. 

The system consists of two mobile robots that are equipped with mobile 

manipulators, water bottles and cameras and tend to four potted cherry tomato 



plants, see also Figure 2. Each plant in the system is augmented with the capability 

to keep track of its own state, measure the humidity of its soil, and call a robot for 

help if needed by integrating a small computer, humidity sensor, and 

communication device into its pot. Distributing sensing and computation in this way 

has the following advantages: instead of maintaining a central database with 

potentially hundred thousands of plants, and keeping track of how tall each one is 

and how many fruits it bears, this information could be stored right at the plant. The 

plant could also use this data to perform simple reasoning such as “my fruit were 

green two weeks ago so they must be red now” and have it updated by robots that 

can be recruited to this purpose. For example a plant can ask a robot to perform an 

inventory of its fruit status. In order to do this, the robot positions itself in front of 

the plant, sweeps its camera in front of it and counts the number of red and green 

tomatoes it sees as well as their position. This distributed architecture is important 

as it allows the system to be scalable, that is remain operational even if the number 

of plants are infinite, as there is no central “bottleneck” through which information 

need to pass and where decisions need to be made. 



 

Figure 3: Gardening Robot tending to tomato plants at MIT’s Computer Science and 

Artificial Intelligence Laboratory. 

The system was able to perform the following functions: respond to a watering 

request by a pot by autonomously docking at the plant and delivering a fixed 

amount of water, performing an inventory consisting of location and color of fruits 

on a plant and storing this information on the plants database by wirelessly 

communicating with its pot, and harvesting a specific fruit by obtaining its 

approximate location from the pot’s database, visually servoing to it and grasping it 

with its claw. 



Although the system integrates sensing, computation and actuation to perform 

autonomous decisions, it is far from a productive system. Key challenges of the 

system are: limited work-space, accuracy and dexterity of the robotic arm, limited 

depth-perception required for manipulation, and the robustness and accuracy of the 

vision system used to detect fruits. Even if these problems will be solved – which is 

feasible albeit not necessarily leading to an economically viable solution – operation 

of such a system is still heavily constrained to operation on potted plants and 

infrastructure that allows robots to navigate between pots. Finding the right trade-

off between environmental modification, needs of producers, and fraction of tasks 

that need to be performed by human laborers is thus another hard problem that 

needs to be addressed before an autonomous gardening system will find broad 

acceptance. 

Discussion 
It is worth noting that neither agriculture nor horticulture have ever been the main 

drivers for technological innovation. Rather, industrial methods and techniques 

were adopted to agriculture long after they have proven successful in other tradesiii. 

This trend seems to be persistent till today. For example, automation in agriculture 

is enabled exclusively by the availability of small-scale and cheap computation, 

which in turn has been driven by the electronic spread-sheet. Similarly, disruptive 

actuation and sensing technologies that have the potential to bring agricultural 

automation to a new level are being developed in orthogonal markets, such as the 

gaming industry, manufacturing, or construction. Indeed, major industrial players in 

precision agriculture support their technical innovations by developing for the 

construction industry, e.g., large earth moving equipment, which provides higher 

margins than agriculture or horticulture. As a result of the impact of the post-

industrial agricultural system on the environment, economic drivers become more 

and more on par with ecological ones.  Indeed, concerns about the environment and 

personal health have accompanied almost every technological development in 

agriculture, comprehensively described at the example of the tomato plant and the 



industrial processes surrounding it by Vileisisxxxvi. With an increasing understanding 

of future challenges on our agricultural system due to population growth and 

limited, non-renewable resources such as oil and phosphorus that will put hard 

bounds on the operation of our current system,  however, this trend might reverse 

and agriculture becoming one of the main drivers for technological development 

and robotic technology in particular. 

Despite providing some of the required functionality under laboratory conditions, 

robots are still far away from performing autonomous gardening. The key 

challenges are: first, the number of tasks that are involved in tending to a tomato 

plant is much larger than the systems described here suggest. Plants require not 

only watering and harvesting, but also about trimming, weeding, pollinating, 

cleaning, and debugging. Consequently, perception problems are not limited to 

finding out where the ripe fruits are, but to see whether the plant is pest infested, if 

the ratio between stems and sprouts is too large and the plant needs more light, or if 

the plant lacks nutrients and has all crumply and yellow leaves, among many others. 

Similarly, manipulation challenges are not limited to fruit-picking or trimming, but 

comprise mundane tasks such as removing an entire plant down to the root or 

removing larvae from under a leaf. Second, while monitoring soil humidity content 

is important, plant needs are very subtle and potential for wrongdoing is large. 

Although mankind has produced a lot of procedural and anecdotal knowledge to 

successfully raise crops and horticultural plants, it is very hard to distill it into clear 

assignments (algorithms) for a robot. A good analogy to understand this challenge 

might be to program a computer to play chess. Given enough computing power, one 

can predict all possible outcomes of different moves and rank order them. Doing this 

only based on the rules of the game, that is avoiding moves that let you loose a 

figure, performs very poorly against an human adversary, however, and only adding 

large amounts of anecdotal knowledge – in the form of what moves Master chess 

player’s have decided on in a particular situation – and heuristics makes for a 

competitive player. Gardening is similar in that just adding water on a regular basis 



wouldn’t get a robot very far; instead the robot needs to understand the subtle clues 

recorded over the lifetime of the plant and how to react to them in an optimal way. 

In addition to challenges that stand in the way to have robots performing gardening 

tasks as we know it to raise crops and artisanal plants in our offices, kitchens and 

living rooms, the true challenges are to do this better than its done today. That is we 

want to improve yield while saving water, nutrients and overall energy 

consumption. Implementing these benefits via autonomous robots is 

complementary to improvements developed by the agricultural industry, which 

include improved fertilizers, novel plant breeds that are more productive and 

robust, sensor-based decision making systems used in precision agriculture, and 

increased automation of existing farm equipment.  Although these improvements 

have led to massive productivity increases in the last 100 years, current trends in 

automation, i.e., farming equipment of increasing size, continues to drive the trend 

to mono-cultures, which is accompanied by the environmental and societal 

problems stated above. Replacing large-scale farming equipment with small-scale 

platforms that can take care of individual plants can therefore lead to a paradigm 

change: by tending to individual plants, plants can be grown in poly-cultures as well 

as on small patches of land that are close to the consumer. At the same time, the 

possible saving of resources due to individual care is the upper limit that can be 

achieved with any precision agriculture system.  

A vast amount of research is needed to implement this vision. We need to learn how 

to make robots understand what they are seeing; for example, what is a plant and 

what is not, what is a leave and what is a fruit; we need to learn how to make robots 

more gentle, for example, when does the robot touch a plant and how much force it 

is using to push it out of the way to reach a fruit; we need to learn how robots can 

manipulate objects that are not rigid but flexible, for example, where does the robot 

has to hold the plant with its one hand so that it can pull of a tomato with its other; 

finally, we need to better understand what a plant needs to grow optimally, but 

without wasting any water or nutrients. Interestingly, robot technology can help us 

to achieve just that: when the robot is involved in growing the plant, it can collect 



data such as the plants height, its color, and how much water and nutrients it 

actually has deposited. By this, robots could be as revolutionary in gardening and 

agricultural science as they have been when sequencing genes.  

A major challenge that goes along with further developing autonomous robotic 

technologies is the loss of conventional jobs. This is indeed the case, as more capable 

robots might replace seasonal workers if they can be sold cheap enough. Replacing 

manual labor by automated solution is an ongoing process, however, which had its 

most devastating impact during industrialization, for example after the advent of 

mechanical weaving machines that put out of work tens of thousands of people 

alone in Massachusetts as well as with the advent of mechanical farm equipment in 

the 1930ies. These technological advances were correlated with an overall 

productivity increasexxxvii, which is – similar to the advent of agriculture 10.500 

years ago – a major driving force for cultural development, including the 

amelioration of education and health care.  

One might argue that robot gardeners will estrange us even more from gardening 

and agriculture, and thus contribute to the “disconnect” of the population with food 

production – the tension between the machine and the garden in the sense of Leo 

Marxii. This argument is alleviated by two observations. First, an already very high 

level of automation, centralized production, and processing of food, has not 

prevented people from raising their own crops. Second, systems such as the 

Telegarden have challenged what the essence of a pastoral experience is and 

suggest that continuous technological evolution – from centralized monocultures to 

environmentally sustainable decentralized poly-cultures – might allow for 

increasing the involvement of people in agricultural and horticultural processes. 

Moving food production away from rural areas back into cities – enabled by small-

scale robotic systems – in fact has the potential to involve citizens on a much deeper 

level in terms of both proximity and transparency. What kind of gardening activities, 

including passive ones such as observing the growing process, is of great interest in 

a space exploration context where gardening, horticulture and consumption of self-



grown vegetables might contribute to an astronaut’s well-being on long duration 

missionsxxxviii. 

Domain experts are often concerned about resource trade-off problems in fully 

automated systems. For example, irrigation, including drip irrigation, is considered 

a solved problem. Why would a robot drive around with a water bottle, if it is easy 

enough to bury a hose in the ground? While this is a valid concern, it should not be 

confused with the environmental and societal benefits that arise from plant-centric 

care. How this care is provided is an economical trade that needs to be addressed 

from a system perspective. A plant should receive the actuation that it needs, based 

on its status that can be inferred by sensing. How these sensors and actuators are 

implemented is less important. As soon as some of the sensors are expensive enough 

that they warrant a mobile platform, this platform can also carry out other tasks that 

have been carried out by static infrastructure. The problem where and how sensing, 

computation, and actuation are performed in the system is therefore independent of 

the challenge to provide individual care to plants. 

Conclusion 
The ability to tend to individual plants in a resource-optimal, autonomous way 

might lead to a paradigm change in agriculture as it will allow moving from the 

currently dominant mono-cultures and centralized production to decentralized 

poly-cultures. Poly-cultures are beneficial as they are less prone to pest infections 

and enable sustainable practices by exploiting companion plants, while 

decentralized production lowers transportation cost. Although these advantages are 

well known, implementing decentralized poly-cultures with current technology is 

too labor intensive and therefore economically not viable. Providing this labor with 

autonomous robots requires fundamental research in perception, that is the ability 

for a robot to understand what it senses, decision making, that is an understanding 

of how a plant reacts to certain inputs as a function of its developmental stage and 

environment, and actuation, that is the ability to perform all the manipulations that 

the plant needs, and includes weeding, harvesting and trimming among others. For 



the first time, agriculture itself might become the technological driver of this 

development as post-industrialization environmental concerns might supersede 

economical drivers that currently dominate agricultural innovation.  Although there 

is no evidence yet that technology will ever be able to reach a level of maturity to 

implement the vision described here, the systems presented in this paper 

demonstrate sub-systems that implement parts of the required tasks. At the same 

time the value proposition of a decentralized poly-culture-based agriculture system 

is continuously increasing due to the decline of non-renewable natural resources 

that are critical for the operation of the current agricultural system, namely oil and 

phosphorus. We conjecture that this value proposition, which is already enormousi, 

together with advances of robotic systems driven by other application domains such 

as autonomous cars, warehousing systems, and companion robots, will eventually 

replace current agricultural practices by decentralized, autonomous, plant-centric 

agriculture and enable an utopia such as described by Gillette, Macnie or Thomas 

that will not only “resolve the tension that Leo Marx, among others, has deemed 

irresolvable: the tension between the industrial and the agrarian orders, between 

the machine and the garden”xxxix, but also make as efficient use of natural resources 

as possible. 
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